

Temperature Compensated Gain Flattening Filter --**TC**

Key Features

- \diamond Passive component
- \diamond Auto temperature dependent gain compensation
- \diamond Very small size
- \diamond Cost saving

♦ Based on our unique passive EDFA temperature dependent gain compensation technique, the Temperature Compensator (TC) is a passive component designed to conquer the issue of EDFA temperature dependency so that the EDF heater, temperature control circuit and insolation box in conventional EDFA can be fully eliminated.

Function Diagram

General Specification

Parameter	Specification	Unit
Wavelength Range	1528-1568	nm
	1565-1617	
Max Insertion Loss*	0.3	dB
Max Temperature Dependent Gain**	0.3	dB
Operating Temperature	-10-70	°C
Storage Temperature	-40-85	°C
Operating Humidity	5-95	%RH
Polarization Mode Dispersion (max)	0.05	ps
Polarization Dependent Loss (max)	0.1	dB
Dimension	3x4x24	mm

*at the temperature the GFF is designed

**gain curve at any temperature minus gain curve at the temperature the GFF is designed

Example of EDFA gain spectrum with TDGCS

