

Temperature Compensated Gain Flattening Filter--TCWDM

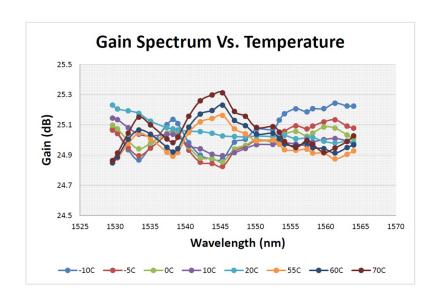
Key Features

- ♦ Auto temperature dependent gain compensation
- ♦ Very small size
- **♦** Cost saving

- ♦ Based on our unique passive EDFA temperature dependent gain compensation technique, the Temperature Compensator (TC) is a passive component designed to conquer the issue of EDFA temperature dependency so that the EDF heater, temperature control circuit and insolation box in conventional EDFA can be fully eliminated.
- ♦ TCGFF is a 2in1 hybrid passive component including temperature compensator and gain flattening filter

Website: www.gcphotonics.com

Function Diagram



General Specification

Parameter	Specification	Unit
Wavelength Range	1528-1568	nm
	1565-1617	
Max Insertion Loss 1550*	0.5	dB
Max Insertion Loss 980	0.3	dB
Max Temperature Dependent Gain**	0.3	dB
Operating Temperature	-10-70	°C
Storage Temperature	-40-85	°C
Operating Humidity	5-95	%RH
Polarization Mode Dispersion (max)	0.05	ps
Polarization Dependent Loss (max)	0.1	dB
Dimension	3x4x24	mm

^{*}at the temperature the GFF is designed

Example of EDFA gain spectrum with TDGCS

Website: www.gcphotonics.com

^{**}gain curve at any temperature minus gain curve at the temperature the GFF is designed